

概述

OC5402 是一款两路 PWM 控制的高调光比降压恒流驱动控制器, PWM 调光比最高可达 10000: 1。

OC5402 支持 16-60V 输入电压范围。

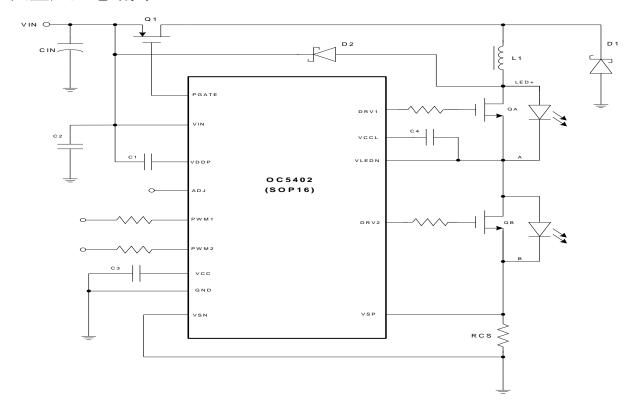
OC5402 采用电流滞环控制方式,无 需环路补偿。

OC5402 可通过外接电阻设置 LED 输出电流,最大支持 5A 以上。

OC5402 支持模拟调光和 PWM 数字调光,具有良好的调光性能。

OC5402 内部集成了欠压保护、过温保护等功能。

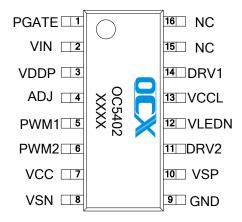
OC5402 采用 SOP16 封装。


特点

- ◆ 宽输入电压范围: 16V~60V
- ◆ 差分低端电流检测
- ◆ 逐周期限流
- ◆ 无需环路补偿
- ◆ 10000:1 PWM 调光范围
- ◆ 250:1 模拟调光范围
- ◆ 内置过温检测
- ◆ 内置限流保护功能
- ◆ SOP16 封装

应用

- ◆ 舞台调光
- ◆ 智能调光
- ◆ 建筑照明、景观亮化


典型应用电路图

封装及管脚分配

管脚定义

管脚号	管脚名	描述				
1	PGATE	PMOS 栅极驱动脚				
2	VIN	输入电源				
3	VDDP	10V LDO1 电源负				
4	ADJ	模拟调光脚				
5	PWM1	PWM1 输入信号,控制 DRV1 输出				
6	PWM2	PWM2 输入信号,控制 DRV2 输出				
7	VCC	10V LDO2 电源正				
8	VSN	电流检测电阻负端				
9	GND	接地				
10	VSP	电流检测电阻正端				
11	DRV2	DRV2 输出信号,驱动外部 NMOS 栅极				
12	VLEDN	10V LDO3 电源负				
13	VCCL	内部 LDO3 电源正				
14	DRV1	DRV1 输出信号,驱动外部 NMOS 栅极				
15, 16	NC	悬空不接				

电特性(除非特别说明, V_{IN} =36V, T_A =25°C)

参数	符号	测试条件	最小值	典型值	最大值	单位
电源电压						
VIN 工作电压	V _{IN}		16		60	V
电源电流						
工作电流	I _{OP}	PGATE最大导通时间开关		3.6		mA
待机输入电流	I_{INQ}	V _{IN} =12V,无开关动作		0.6		mA
输出电流检测						
CS 端电压	VCS	VSP-VSN	192	200	208	mV
检测电压高值	V_{CSH}	VSP-VSN 从 0.1V 上升, 直至 PGATE 输出高电平		220		mV
检测电压低值	V _{CSL}	VSP-VSN 从 0.3V 下降, 直至 PGATE 输出低电平		180		mV
CS 管脚输入电流	I_{CS}			10		uA
ADJ 线性调节范围	VADJ		0.5		2.5	V
LDO 电压						
LDO1 输出电压	V_{DDP}	VIN-VDDP 电压,空载		10		V
LDO2 输出电压	V_{CC}	VCC 对地电压,空载		10		V
LDO3 输出电压	VCCL	VCCL-VLEDN 电压,空载		10		V
PWM 输入						
PWM*输入高电平	PWM_H		1.8			V
PWM*输入低电平	PWM_L				0.5	V
DRV 驱动						
DRV*上升时间	T_{RISE}	DRV 脚接 500pF 电容			50	ns
DRV*下降时间	T_{FALL}	DRV 脚接 500pF 电容			50	ns

过温保护						
过温调节	OTP_TH	输出开始降电流		160		°C

应用指南

工作原理

OC5402 是一款内置 60V 功率开关的低端电流检测降压型高精度高亮度 LED 恒流驱动控 制器,专为驱动舞台灯 LED 点光源而设计。系统通过一个外接电阻设定输出电流,最大输出 电流可达 5A: 电流检测精度高达±3%。

系统上电后, 定义差值:

$$\Delta v = V S P - V S N \tag{1}$$

两路 PWM 控制的高调光比 LED 降压恒流控制器

通过典型应用可以看到,负载 LED 导通时的电流与电感 L 电流以及电阻 Rcs 上的电流相 等。上电后,电感电流不能突变,故电阻 R_{CS} 上的电流为零,于是差值 $\Delta \nu$ 亦为零;此差值输 入到芯片内部,与基准电压(220 mV)比较后,使得功率开关管开启。于是 V_{IN} 通过电阻 R_{CS} , 电感 L,负载 LED 以及功率开关管到地形成通路,电感 L 储存能量,其电流逐渐升高。

当电感电流达到:

$$I_L = \frac{220 \, m \, V}{R_{CS}} \tag{2}$$

此时,功率开关管关断;之后,差值 Δv 输入到芯片内部,与基准电压(180mV)比较后, 使得功率开关管保持关断状态。由于电感电流的持续性,电感电流便通过负载 LED 及续流二 极管 D, 电阻 R_{CS} 释放能量, 其电流逐渐下降。

当电感电流达到:

$$I_{L} = \frac{180 \, m \, V}{R_{CS}} \tag{3}$$

此时,功率管开启;系统进入下一个周期循环。

此系统对于电感电流的控制模式称为电感电流滞环控制模式,其对负载瞬变具有非常快 的响应,对输入电压具有高的抑制比,其电感电流纹波为+/-10%。

电流取样电阻选择

系统稳定后,可假设负载 LED 上的电压稳定,于是可近似认为电感电流呈线性变化。

故由前面叙述可知, 电流取样电阻 Rcs上的电流与负载 LED 上电流相等, 于是电阻 Rcs 的取值决定了负载电流的大小。

$$I_{LED} = \frac{0.22 + 0.18}{2 * R_{CS}} = \frac{0.2}{R_{CS}} \tag{4}$$

电感选择

电感值的大小决定系统工作频率。稳定时,假设负载 LED 电压为 V_{LED} ,输入电压 V_{IN} , 电感电流纹波 0.25*I_{LED},则功率管导通时间:

$$T_{ON} = \frac{0.25 * I_{LED} * L}{V_{IN} - V_{LED}} + TD1$$
 (5)

功率管关断时间:

$$T_{OFF} = \frac{0.25 * I_{LED} * L}{V_{LED}} + TD 2$$
 (6)

由(5)(6)可得系统工作频率

$$F_{sw} = \frac{(V_{IN} - V_{LED}) * V_{LED}}{0.25 * V_{IN} * I_{LED} * L + (TD1 + TD2) * (V_{IN} - V_{LED}) * V_{LED}}$$
(7)

其中 TD1=43ns 和 TD2=32ns 为比较器延时。

为保证芯片可靠稳定工作,建议其工作频率低于系统最大工作频率 1MHz。

ADJ 调光控制

ADJ 脚是模拟调光脚,当 ADJ 电压大于 2.5v 时,输出全亮。ADJ 输入电压在 0.5~2.5V,输出亮度对应调整,当 ADJ 电压小于 0.3V,输出关闭。

PWM 调光控制

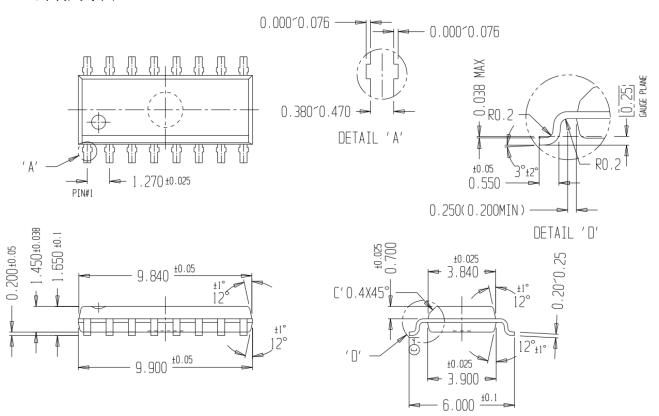
PWM1/PWM2 输入信号分别对应控制输出 DRV1/DRV2 信号,用于控制 NMOS 管的 gate端,从而实现 NMOS 并联的 LED 灯亮与灭、灰度调节。PWM1/PWM2 输入信号可单独控制,可以实现较高的电流调节线性度,实现较为理想的灰度控制效果。

当 PWM1=H(5v 高电平)时, DRV1=L(0V 低电平),输出灯亮; PWM1=L(0v 低电平)时, DRV1=H(VCCL 对地电平电压),输出灯灭。PWM1 调光频率支持 1K~25KHz。

当 PWM2=H(5v 高电平) 时, DRV2=L(0V 低电平), 输出灯亮; PWM2=L(0v 低电平) 时, DRV2=H(10V 高电平), 输出灯灭。PWM2 调光频率支持 1K~25KHz。

过温保护

当芯片温度过高时,系统会限制输出电流峰值,典型情况下当芯片内部温度超过 160 度以上时,过温调节开始起作用:随温度升高输出峰值电流逐渐减小,增强系统可靠性。


PCB layout 应用注意点

- 1、VIN 输入端电解及滤波电容尽量靠近 PMOS 管源级。
- 2、VCS 电阻需要尽量靠近 VSP/VSN 芯片管脚。
- 3、输入 PMOS、电感、LED 灯+NMOS 管、CS 电阻到地的充电回路,及电感、LED 灯+NMOS 管、CS 电阻、续流二极管组成的续流环路面积要尽量小。
- 4、C1, C2,C3,C4 电容应靠近 IC 引脚,连线短。
- 5、PWM1/PWM2 引脚的输入端串接限流电阻; DRV1/DRV2 到 NMOS 的栅极之间串一个电阻调节开关速度。

封装信息

SOP16 封装尺寸图:

